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Modeling and Control Design of Quadcopter Motor
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1. oduction

The modeling and control design of the quadcopter motor was conducted using the Laplace Transform
method. The mathematical model of quadcopter was used as the load torque of brushless de motor to control
the stability of altitude vertical take-off motion. The quadcopter was moved by four brushless de motor
(BLDC) and propeller. The propeller was controlled by clockwise and counterclockwise rotation to create
thrust force so that the motor speed can maintain stability conccrning the body frame. The body frame
(quadcopter) was designed using Solidwork, and the design was used as the load torque of the brushless de
motor.

The vertical take-off motion is the basic principle of lift setting by combining the propeller motor speed
where the propeller motor speed must be higher than the body frame mass. The stability is influenced by body
frame mass, Hence, the motion experiences oscillation to reach a steady state.

The stability of vertical take-off motion was obtained by adding PID control. PID was used as the
parameter setting for Kp, Ki, and K« based on the output system. /ever, parameter setting has a gain limit
so that the gain should be tuned manually. This research proposed Ziegler-Nichols PID tuning and fuzzy gain
scheduling PID to overcome the stability of vertical take-off quadcopter motion. The control design was
modeled based on the motor and quadcopter mathematical model. Then. the control design was validated using
Matlab Simulink.

2. Related Research

Four brushless de motor was modeled systematically. Wind disturbance affected the stability of quadcopter
motion. The PID controller was suggested and quadcopter was designed by using SolidworkEElhe simulation
results showed that the quadcopter model reduced noise disturbance in the lift force [1]. The fuzzy self-tuning
PID control was used to control the altitude quadcopter. PID control had limitations in the search for parameter
values. This paper suggested self-tuning PID control the gain parameter of Kp, Ki, and Kd. The simulation
results showed that the parameters were obtained accurately during the searching [2].

The performance of the two brushless dc motor control techniques was compared. PID self-tuning control
and references adaptive control (MRAC) models with the PID compensator. Control was reached at different
speeds, and load interference. The simulation showed that the design of two controls had an excellent
performance on the system [3]. The mathematical model was used to set the plan in different settings
processes. Dynamic modeling was suggested in this research by implementing different control performance
of Pl and furzy logic. The simulation showed that the gain scheduling fuzzy Pl logic gave a better
performance than conventf2Z@l control [4].

This paper suggested fuzzy logic based on the PID control system for the altitude quad-rotor stability.
Fuzzy logic was used to set the PID parameter values efficiently. The simulation results explained that fuzzy
logic based on the PID had better stability and rise time compared to conventional control [5]. The control
design was used to control the vertical take-off. The altitude quadcopter control was obtained using the Euler-
Newton equation. PID controller was prmod to control vertical take-off quadcopter. The simulation was
conducted using Matlab Simulink [6]. This paper discd the development of a fuzzy reinforcement
schedule scheme from PID control. Fuzzy control was used to determine the parameter value based on the

http://dx.dol.org/ 10.1 797 7/um048v2i2p34-45 FESPE, Vol. 2, No. 2, July 2020, pp. 34-45
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error signal and the initial error signal difference. The simulation results showed that the fuzzy gain scheduling
PID control gave a quicker response than the Ziegler Nichols and Kitamori's PID control [7].

21 T ies

De motor converts Irical energy into mechanical energy. De motor is classified into two: brushless de
and brusfeyll de. Each motor has six essential parts: rotor (armature), stator, commutator, field magnet, and
brushed. The magnetic field is created by the permanent magnet, whereas the overall electrical current creates
other magnetic fields in the motor winding [8]. The mathematical model of the dc motor consists of R
resistance and L armature inductor, Meanwhile, the back-EMF coefficient is represented by e [9].

L e
Cmm)E))
= &

Figure 1. The equivalent circuit of a brushless dc motor

2.2 Modeling System

The modeling system was used to find the load torque and inertia speed in the brushless dc motor. In
addition to modeling the system, the characteristics of a brushless dc motor can be calculated with the
following equation [9].

Torgue Angular rate
NE)im ) )
7 Viscous frction

Figure 2. The inertia of DC brushless motor

By ignoring mechanical losses, overall electromagnetic power becomes kinetic energy [11].

P. =T.0 (h

Where:

Te = Electromagnetic torque

Y] = Rotational angle speed

P = Number of pole

The spring equation at torque is as follows.

T(t) = K8(t) (2)
The torsion viscous damper equation is as follows.

_ a8
T(t) = B= =
The electromagnetic torque equation is as follows.
T, = 2pWnis = Kqi (4)
Where:
Kt = Constant torque cocfticient

(3)

i = Phase current

So the overall system modeling of electromagnetic torque and the equation of motion is explained in the
equation (5).

T, =T =]5+ B0 (5)
The equation of inertia (acceleration).
,d2eit
() = (6)
Where:
T = Load torque
j = Rotor inertia moment
B,B, = Friction coefficient

Lt ides Al el 1A 1T T Tl VA0 VIVA 24 AL CEOND al 7 Aa D falee WYMY e 14 AL
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2.3 Kirchhoft’s Voltage Law

Kirchhoff's voltage law is applied in a close circuit equal to zero. Or the sum of each R and L equals zero
[10].

+
0z

O
Figure 3. Brushless de motor equivalent circuit
V=Rala+LE+E (7)
Ed.w=Kydw (8)
de
E=Kpw (10)
dé
E=jfa> (11)
T.¢.ly = . K. I, =Kp L, (12)
T =K, (13)
. d%a da
T=ig+By (14)
Where:
R, = Armature resistance
L, = Armature inductance
ia = Armature current
E, = Back EMF induction
V,Uqy = Voltage
T = Torque
6 = Angular displacement
j = Rotor inertia moment
Kt = Constant torque coefficient
KyK. = Back EMF coefficient
w = Angular velocity
Q0 = Rotor speed
Ty = Load torque
Te = Electromagnetic torque

2.4 The Laplace Transform

The Laplace transform was applied to the brushless DC motor electric circuit and quadcopter mechanics so
the equation can be calculated as follows.
Laplace brushless dec motor transformation in the equation (7—14).

V(s) = Ra. 1y (5) + La(s)L (s) + E(s) (15)
V(s) = E(s) = La(s)[Ra + La(s)] (16)
E(s) = Kp(s)B(s) (17)
T(s) = Krla(s) (18)
T(s) = (s)%8(s) + B(s)0(s) (19)
T(s) =s6(s)[(s)j + B] (20)
lo(s) = T2 1)

Lt ides Al el 1A 1T T Tl VA0 VIVA 24 AL CEOND al 7 Aa D Talee WYMY e 14 AL
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E(s) = K,(s)
Laplace system modeling transformation in equation (2, 3, and 6).
T(s) = [i(s)* + B(s) + K]@

de
w =—=frad/s
T(s) = [Js + B]Q(s)
=L = T
ﬂ(s) - is+B - ﬂ(S) - Js+Cp

2.5 Quadcopter Motor Equation

The quadcopter motor equation is used to produce the following torque [8].

Figure 4. Quadcopter
Where:
E = Fixed reference frame (ground)
B = Body reference frame
Fr = Thrust force of the propeller
Q =Kl
V=R, I+ K.w
The voltage equation for the quadcopter motor power is explained in equation (29).

P=LV

Q
P= r v
Where:
Q = Motor torque
vV = Voltage across the motor
I = Motor current
w = Rotor angular speed
Kq = Torque-current relation
R, = Motor armature resistance
K = Back EMF coefficient

2.6 Thrust Force

37

22

(23)
(24)
(25)
(26)

27
(2%

(29)
(30

Thrust force is produced by the speed of the propeller on the motor, where the thrust force is positioned at
rest on the ground. The power at the propeller is also calculated as rpm to calculate thrust. So the equation is

explained as follows [8].

#r ZDZp VAV

Where:

T = Thrust

D = Diameter propeller (m)

v = Velocity of air at propeller (m/s)

AV = Velocity of air accelerated by propeller (m/s)
p = Air density (1.225 kg/m*)

P = Motor power (watt)

Propeller air speed V = LAV isused in the quadcopter [8].

2
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T=ID%pVaAv (32)
g
Power on the propeller motor as follows [8].
T= (30%p? & 34
=\zVe ) G4

The equation uses Newton second law as follows [8].

1y,
[502eP? '
m=2=I1-["F (35)

a g g
T=mg (36)
Where
F = Force (N)
T = Thrust (N)
m = Mass (kg. m.a’sz)
g = Gravitaticm),iﬂ m/s?)
D = Propeller diameter (m)
p = Air density (1.225 kg/m")
P = Power (watt)
a = Object’s speed
Using Newton Second Law: thrust force, gravity, and drag force are obtained in below equation [8].
F=m.a (37)
Finrust — Fgravity — Tair drag = mv (38)

Thrust is a force measured in Newton. In the motor datasheet, thrust is explained as thrust in mg. The
propeller is multiplied by gravity as follows [8].
T=pg (39)

2.7 Drag Force

ag force is determined based on the dynamic model of the motor, where I represents the air velocity, and
V represents the angular speed of the motor. So that the thrust can be calculated with the angular velocity
equation as follows [8].
1

Fp = pV*AC, (40)
T =>pCpAV* @n
Where:

p = 1.225 (Air density, Kg/m®)

A =mr? (Area swept by the propeller, m®)

r = (.0635 (Radius of the propeller blade, m)

Cp = 1.3 (Coefficient of drag)

Vv = (Velocity of the air by propeller blade, m/s*)

A *—'%(MTM‘)Z +3 X WX g pelter

MTM = Motor to distance motor
Ryrop = Radius of the propeller

3. Method

This research method used Proportional-Integral-Derivative (PID), PID tuning based on Ziegler-Nichols,
and Fuzzy gain scheduling PID. Modeling brushless de motor with quadcopter load torque is explained as
follows.

3.1 Proportional-Integral-Derivative

The combination of pmportional-intcgml—dcrivativntml was applied to the stability of the vertical take-
off quadcopter movement. The PID control was used to obtain the parameter values of Kp, Ki, and Kd based
on the altitude output error. If there is a change in altitude output, the sensor will read the change then
compared to the altitude input. The difference in altitude input and output is the error value. Furthermore, the
controller will respond to changes by adjusting the altitude output and the same altitude input. The PID control
equation is explained as follows [12].

http://dx.doi.org/10.1797 7/umD48+2i2p34-45 FESPE, Vol. 2, No. 2, July 2020, pp. 34-45
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Mis) _ Kj
E_KP+?‘+KE1'S (42)

E(s) = Ms)
K, +?' +Kqs ———>

Figure 5. Proportional Integral Derivative
3.2 Ziegler-Nichols Tuning

Ziegler-Nichols was used as the parameter tuning based on the K, (ultimate gain) and 7}, (ultimate period)
step frequency response method to obtain the Kp, Ki, and Kd. PID control had a gain limitation, so it should be
manually tuned. Ziegler-Nichols was designed to give a better response system if there is a change in the
stability of the quadcopter movement, load disturbance, and correction of small error values. The Ziegler-

Nichols tuning equation is explained as follows. Where Ku = 8 and T = 27r+/3 = 3.63 [13].

TABLEI
Ziegler-Nichols Tuning Parameters
Control K T Ty T,
P 05K, - T,
Pl 04 Ky 0.4 Ky 2 14Ty
PID 0.6 K, 0.5K,/T, 0125 K, T, /8 0B3T,
Kp = 0.6 XK, = 4.8 (43)
Ki=05x Ky/T, = 1.10 (44)
Ky =0.125 xK, x T,/8 = 045 (453)

3.3 Fuzzy Gain Scheduling PID o
B5
Fuzzy gain scheduling PID was tuned based on the Ziegler-Nichols parameter with Kp an@’ parameters.
Where Kp and Kd was assumed in each range [Kp_m,- ,Kp_maxmd [Kamin » Ka max]-- Next, Kp and Kd were
normalized into the range of 0 and 1. The PID par er was determined based on the current error e(k) and
initial error difference Ae (k). Hence, Kp, Kd, and a are calculated using the below equations [7].

= (Kp = Kpmin)/ (Kpmax = Kpmin) (46)
Ky = (Kyg — Kamin)/ (Kamax — Kamin) (47)
T; = aTy (48)
K; = K, /(«Ty) = K5/ (g (49)
Ky = (Kpmax — Kpmin) Kp + Ky min (50)
Ki = (Kamax — Kamin) Ky + K min (51)
K; = Kj/(aKq) (52)
Kpmin = 1.76 Ky , Kpmax = 248K, (53)
Kimin = 029 Ky T, . Kimax = 0.58 K, T, (54)

3.4 Fuzzification

Fuzzification converts numeric input into languages with the membership funciionacrc are two inputs to
control error (¢) and change in error value (du / dt) of the signal [-1 1], linguistic input NB (Negative Big), NM
(Negative Medium), NS (Negative Small), Z (Zero), PS (Positive Small), PM (Positive Medium), PB (Positive
Big) [7].

Lt ides Al el 1A 1T T Tl VA0 VIVA 24 AL CEOND al 7 Aa D falee WYMY e 14 AL
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Figure 6. Input fuzzification of e and (du/dt)

Output fuzzification is assumed within the range of [0 1] and membership function parameters Kp, Ki, and
Kd are set with small and big.
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Figure 7. Output fuzzification of Kp, Kjand Ky J

The rule base was designed based on the characteristics of a brushless de motor. Where input linguistic
error (e) 7 and input error (du/dt) 7 so that the overall input of (e) and (du/dt) are 7x7 =49 rules.

TABLE Il
Fuzzy Rule Kp
[ Fuflle | — dwat -
Kp NB | NM | NS z PS5 | PM | PB
NB | B B B B B B B
NM [ s B B B B B
NS S s B B B s B
[ z S S B B S S 5
Ps s s B B B s 5
M S B B B B B S
PB B B B B B B B
TABLE 11
Fuzzy Rule Ki

Fuzzy Rule | [E) dwdt
Ki NB | NM | NS z Ps | PM | PB
NB S S B s S S B
NM | B B 5 s s ] B
NS B B B S B B B
e Z B B B B B B B
Ps B B B S B B B
PM ™ B s 5 S B B
B S B S B S B S
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TABLE IV
Fuzzy Rule Kd
Fuzzy Rule |_[B) dudt
Kd NE | NM | NS z PS | PM | PB

NB 2 8 2 2 g 2 2
NM [ 3 3 2 2 ] 3 3
NS 4 3 3 2 3 3 4

e z 5 4 3 3 3 4 5
P3 4 3 3 2 3 3 4
PM 3 3 2 2 2 3 3
tH 2 2 2 2 2 2 2

Defuzzification was used to convert linguistic variables into exact numeric values. The center of gravity
(COG) method was applied to defuzzification.

4. Hasil

Figure 8§ presents the motor modeling and control design with quadcopter load torque.

Output Ketnggian

Pant

Ampliude = 135
Overshoot (%) = 35

e

Ketinggian {m)

darnk ()

Figure 9. Stability response of quadcopter movement

The altitude response of the quadcopter at 100 m was oscillated to achieve the expected target. This
occurrence was influenced by the load and lift force. Where the peak amplitude was 135, and the overshoot
was 35%, so the oscillation of the height response affected the stability of the quadcopter's movement to
achieve a steady-state

Then the gquadcopter movement was controlled using proportional-integral-derivative and PID tuning
based on Ziegler-Nichols. Figure 11 displays the simulation results.

Ketnggmn (h}
Hatinggisn (m)

.
Figure 10. PID tuning based on Ziegler-Nichols
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Bruhsless dc motor was used to regulate stability motion of quadcopter by two electrical and mechanical
equations. Electrical equations were current, voltage, inductance and power. Mechanical equations were thrust
force and drag force of quadcopter that it was used as load torque of brushless dec motor. Then, two equations
were modeled by Laplace transform method to easy control process.

Stability control of quadcopter motion used PID controller to tune Kp, Ki, and Kd parameter based on the
value of altitude output error. If the altitude input changed, then, the stability of motion undergone the
changing of altitude output. The change was read by a sensor and feedback to altitude input. If the output
altitude was not equal to the altitude input to reach stability. Then error was taken place and PID controller sets

to input and output equal to obtained the small error.
Rospon Quadcopter

Amplisde= 135
Owershoat (%) = 35

Amplilude = 110
Cvarshoot (%) = 10

Ketinggian (m}

1 15
drak fm)

Figure 11. Response to quadcopter movement stability with Ziegler-Nichols PID tuning

PID tuning calculation based on Ziegler-Nichols with K, (ultimate gain) and T, (ultimate period) obtained
parameter values Kp = 4.8, Ki = 1.10, and Kd = 0.45. The quadcopter response experienced an overshoot of
10% and a peak amplitude of 110. Whereas the system plan experienced an amplitude of 135 and an overshoot
of 35%. Ziegler-Nichols PID tuning could reduce the oscillation faster in quadcopter movement stability to
achieve the desired set-point response.

Figure 13 shows the quadcopter motion stability that was controlled using fuzzy gain scheduling P1D.

- Fatinggian (m)
Hatinggian [hj

Figure 12. PID control modeling, Ziegler-Nichols and fuzzy gain scheduling PID

PID controller had the parameter gain limitation, then the parameter should be tuned manually, Whereas
tuning Ziegler-Nichols (ZN) lacked selection of parameter Kp, Ki, Kd, and had an excessive overshoot in time
response. Consequently, PID and ZN need accuracy parameter tuning to reach the target. Fuzzy gain
scheduling PID controller was utilized to design a new scheme rule-based gain scheduling P1D controller. The
new scheme of the fuzzy rule was used to determine Kp, Ki, Kd parameter based on the changing of altitude
output error. é

An approach of parameter value was assumed to range Kp = [Kpmin, Kpmax] and Ka = [Kdmin, Ka.max]. An
adaptation of parfiiter value was assumed by experiment and would be given in equation (53), (54). Then,
Kp and Kd were normalized into the range between zero and one. In the scheme of fuzzy gain scheduling,
PID parameter was determined based on current error e(k) and its first difference Ae(k) with representing
membership function in figure 6. Ki was determined by referencing a parameter value of Kd. Where K7 was
presented in equation (48), and integral gain was obtained by equation (49).

Variable linguistic (NB, NS, NM, Z, PS, PM, PB) were chosen based on characteristic brushless de motor
by quadcopter load to reach the target of stability of motion. The rule fuzzy could be derived at Tables 11, 111,
and IV.

e [Ife(k)is PB, and Ae(k) is Z, then Kp is big, Kd is small, and @ = 2.

o [Ife(k)is Z, and Ae(k) in NB, then Kp is small, Kd is big, and & = 5.

To produce a big control signal, the PID controller should have big gain Kp, big gain Ki, and small gain
Ki. PID controller that was given big or small gain at Ki would produce strong stability of motion. Ki was
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determined by a new scheme with comparison tuning ZieglB-Nichols rule. In the tuning Ziegler-Nichols rule,
Ki was always taken four times as large as Kd. That o was equal to 4. In the proposed scheme, a took a value
less than 4, (say 2) to generate the strong Ki. The @ value was determined by the singleton membership
function. If & controller was small. it would be produced small overshoot. and PID controller should have
small gain Kp, big gain Kd, and small gain Ki with the fuzzy rule.

Fsspon Ousdcopler

Ampliude = 135
A% Overshool (%) = 35

% Amplituda = 110
—" Overshoot (%) = 10

Amplitude = 100.1
Owershool (%)= 0.1

Kutingginn (m)

05 1 15
Jarak (i

Figurel3. Stability response of quadcopter motion using PID control, ZN and Fuzzy gain scheduling PID

Fuzzy gain scmiling calculation results PID with K, (ultimate gain) and 7, (ultimate period) obtained
parameter values K (p.min) = 1.76, K (p.max) = 2.48, K (d.min) = 0.29, K (d.max) = 0.58. The responses
showed that the altitude of the quadcopter had an overshoot of 0.1% and a peak amplitude of 100.1. Whereas
the response plan experienced an amplitude of 135 and an overshoot of 35%. Fuzzy gain PID scheduling could
reduce oscillation by 0.1% compared to Ziegler-Nichols PID tuning in quadcopter stability to achieve steady-
state

5. Canclusion

The modeling and control design of the quadcopter motor was performed using the Laplace transform
method. The quadcopter mal]:lemalicanodei was used as the load torque of brushless de motor to control the
stability motion in altitude vertical take-off. The motion stability was influenced by body frame mass,
propeller speed, and wind disturbance during hovering. Hence, the quadcopter motion experienced oscillation
to reach a steady state. Ziegler-Nichols PID and fuzzy gain scheduling PID tuning were suggested to overcome
the motion stability in altitude vertical take-off. The simulation results showed that fuzzy gain scheduling PID
reduced the overshoot (1.1% smaller than Ziegler-Nichols tuning.
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Nomenclature

T = Electromagnetic torque

0 = Rotational angle speed

P = Number of pole

Kt = Constant torque coefficient

i = Phase current

TL = Load torque

j = Rotor inertia moment

B,B, = Friction coefficient

R, = Armature resistance

L, = Armature inductance

i, = Armature current

E, = Back EMF induction

V,Uy = Voltage

T = Torque

6 = Angular displacement

j = Rotor inertia moment

Kt = Constant torque coefficient
KpK. = Back EMF coefficient

w = Angular velocity

9] = Rotor speed

Ty, = Load torque

Tea = Electromagnetic torque

E = Fixed reference frame (ground)
B = Body reference frame

Fri = Thrust force of the propeller

Q = Motor torque

v = Voltage across the motor

! = Motor current

w = Rotor angular speed

Kq = Torque-current relation

R, = Motor armature resistance

K. = Back EMF coefficient

D = Diameter propeller (m)

AV = Velocity of air accelerated by propeller (m/s)
p = Air density (1.225 kg/m*)

P = Motor power (watt)

F = Force (N)

T = Thrust (N)

m = Mass (kg. m/s?)

g = (Gravitation (9.81 m-’sz)

D = Propeller diameter (m)

P = Power (watt)

a = Object’s speed

p =1.225 (Air density, Kg,-'m")

A = 1r? (Area swept by the propeller, m°)
r = (.0635 (Radius of the propeller blade, m)
Cp = 1.3 (Coefficient of drag)

v = (Velocity of the air by propeller blade, m/s’)

http://dx.dot.org/10.17977/um048v2i2p34-45 FESPE, Vol. 2, No. 2, July 2020, pp. 34-45
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1 2 . 2
A - Z(MTM)“ +3 X WX Ty peter
MTM = Motor to distance motor

Rprop = Radius of the propeller

http://dx.dororg/ 10.1 7977/ um048v212p34-45
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